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ABSTRACT
Given a repeatedly issued query and a document with a not-
yet-confirmed potential to satisfy the users’ needs, a search
system should place this document on a high position in
order to gather user feedback and obtain a more confident es-
timate of the document utility. On the other hand, the main
objective of the search system is to maximize expected user
satisfaction over a rather long period, what requires showing
more relevant documents on average. The state-of-the-art
approaches to solving this exploration-exploitation dilemma
rely on strongly simplified settings making these approaches
infeasible in practice. We improve the most flexible and
pragmatic of them to handle some actual practical issues.
The first one is utilizing prior information about queries and
documents, the second is combining bandit-based learning
approaches with a default production ranking algorithm. We
show experimentally that our framework enables to signifi-
cantly improve the ranking of a leading commercial search
engine.

1. INTRODUCTION
A common search system is usually based on a determinis-

tic ranking model that aggregates both pre-feedback features
describing the content of web pages and implicit feedback
features based on user behavior data stored in query logs.
This leads to the following iterative process of interaction
with users that repeatedly submit a particular query. At the
first stage, when the query is relatively new to the system,
it ranks documents by the scores using their pre-feedback
information only. Further, at the second stage, it corrects
this ranking with respect to implicit feedback data, while
it is being collected. During this stabilizing phase, scores
of top ranked documents which get negative user feedback
become lower, so these documents are exchanged with other
documents with high pre-feedback based scores. After the
algorithm found enough documents getting mostly positive
user feedback, the ranking is not being changed anymore by
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two reasons: first, the algorithm continues to receive only
redundant confirmation of the top documents’ relatively high
relevance, and, second, no documents lacking implicit feed-
back have scores higher than those which were lucky to get
some. At the same time, pre-feedback information cannot
fully reflect all the aspects of the documents that potentially
impact user satisfaction, therefore, some of those documents
lacking user feedback can be more relevant than those ranked
higher. However, the customary scheme of user–system in-
teraction just described cannot find the additional evidence
for that, since these low ranked documents are very unlikely
to ever receive user feedback. Therefore, it may be of use
to have other mechanisms to place some lower ranked docu-
ments on the upper positions to attract more user feedback
to them. In this way, we may degrade the query performance
for a short period of time, by taking the risk of showing some
less relevant documents on the top positions, but improve
it in the long term, by giving a chance to get user feedback
(and, hence, improve their scores) for more potentially highly
relevant documents.

Thus, there are two different ranking strategies: the ex-
ploitative one, aiming, at each step, to maximize the ranking
performance for the current query issue , and the exploratory
one, allowing to collect more user feedback on lower ranked
documents even at the cost of degrading the ranking perfor-
mance for some query issues. It is especially important to
achieve the optimal interplay between these two strategies
that maximizes the cumulative quality of a series of con-
secutive query issues. We refer to this problem as Online
Learning to Rank with Exploration and Exploitation (OL-
REE) problem in this paper. It is a particular case of the
well-known exploration–exploitation trade-off problem for-
malized most appropriately in the Stochastic Multi-Armed
Bandit (SMAB) setting [2]. This setting originates from a
problem of a gambler facing a row of casino slot machines,
sometimes known as “one-armed bandits”. Here we briefly
describe the problem setup.

There is a set of arms A = {ai}. At each step t, an algo-
rithm chooses an arm a(t) ∈ A, receives its reward Rt, which
is a sample from an unknown arm-associated distribution
with an unknown expectation ra(t) (we call ra the arm gain
throughout the paper), and updates the stored information
about a(t). The algorithm goal is to maximize the cumula-

tive reward R(T ) over the first T steps: R(T ) = E

(
T∑
t=1

Rt

)
,

where E denotes expectation. The general idea underlying
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a bandit algorithm is the following. It stores information
about each arm a, which includes not only an estimate of
ra on the basis of the observed user behaviour, but also
the confidence in this estimate which can be represented,
for example, as its standard deviation or as a distribution
over values of ra. Then, at each step, an algorithm balances
between a purely exploratory choice (the arm with the lowest
confidence) and a purely exploitative choice (the arm with
the highest estimated ra).

In this paper, we investigate one of the most promising
ways to formulate the OLREE problem in the SMAB terms.
We consider a repeatedly submitted query as a separate
bandit problem setting, each query submission as one step,
a ranking system as a gambler, and each document as an
arm. Examination of a document by a user is considered as
pulling of the corresponding arm, and the reward of the arm
is then determined by the user satisfaction with the examined
document. As we discuss in Section 8, this approach allows us
to apply SMAB theory more appropriately in practice than do
the other known applications of this theory to OLREE. Unlike
in the original SMAB formulation, within this approach, a
gambler is able to choose not one but several arms for pulling.
Their number is upper-bounded by the capacity of the search
engine result page (SERP). However, after an arm is chosen
for pulling (so, a document is included into the ranking),
the gambler has no control over it and whether it will be
eventually pulled or not depends entirely on the user who
issued the query. Moreover, due to the limitations of logging
mechanisms, while estimating the gain rd of a document d
and the confidence in this estimate, the gambler does not
often know whether the pulling of the arm actually took
place. In this case, the SMAB formulation and the known
bandit algorithms cannot be directly applied to the OLREE
task and should be adopted to it.

To the best of our knowledge, the only existing adoption
that attempts to solve the mentioned problems was suggested
by Sloan and Wang [31]. It is based on utilizing a click model
to infer information about the document gain from the user
behavior and takes position bias into account. However, this
pioneering study did not address another problem, whose
solution would actually make this promising ”document=arm”
approach practically useful: no real-world search engine
can afford to ignore the initial guess about the document
relevance made on the ground of the prior information that
is already available before the exploration starts. Neither it is
reasonable and feasible to explore all documents available to
the search system, as such intense exploration will severely
degrade user experience, what is highly undesirable even
for a very short period. Thus, we need to explore only
the documents, in whose scores the ranking system is least
confident. The prior estimation of both rd and our confidence
in this estimate and smooth introduction of a bandit-based
ranking algorithm into a default ranking system are the
essential problems that have not been addressed so far.

In this paper, we propose an approach to marry a state-
of-the-art default ranking model with the above-described
bandit-based formulation. Particularly, we develop an ap-
proach for setting prior values of rd estimates and of confi-
dences in them based on both the document features available
to the default ranking system and the ranked list of docu-
ments it produces. This approach relies on two techniques
that have not been previously applied to the OLREE prob-
lem: constructing a regression model for error prediction and

applying isotonic regression to adjust regression to ranking.
We show experimentally that incorporation of our bandit-
based algorithm into a highly optimized production ranker
of a major commercial search engine remarkably increases
the performance of the latter during a 10-day period.

To sum up, our contributions are:
• A new formulation of the OLREE problem in the terms

of the SMAB problem (Section 2).
• An approach to utilizing prior information in the OL-

REE problem by estimating prior distributions of doc-
uments’ relevances (i.e., the confidences in their prior
estimates) (Section 4),
• An algorithm for combining a state-of-the-art ranking

model with a bandit-based ranking approach (Section 5).
Besides, we present experimental results in Section 7, re-

view related work on application of bandit-based methods
to IR tasks in Section 8, and make conclusions in Section 9.

2. PROBLEM FORMALIZATION
We suggest the following SMAB formulation for the OL-

REE problem which leads to the optimization problem con-
sidered in [31, Eq. 1]. Given a unique query, we associate it
with a dedicated bandit algorithm which makes a step per
each query issue. This algorithm treats each document re-
lated to the query as an arm. At each step, in order to choose
the list of arms for pulling, the algorithm generates a SERP
in response to the current query issue and observes some user
behavior on it. The main difference of our OLREE setting
from the ordinary SMAB problem described in Section 1 and
from the approaches of all the related studies, except for
[31], is that an arm chosen by the algorithm for pulling can
be both pulled or not pulled depending on whether the user,
who issued the query, actually examined or did not examine
the corresponding document on the SERP (similar events
{Si = j}, j = 1, 2 were used in [31, Sec. 3.2]). This leads to
the notion of document trial which means the fact of pulling
the corresponding arm. Each examined document provides
a reward to the algorithm, which equals 1, if the user is sat-
isfied with the document, and 0 otherwise (unsatisfied). We
also assume that the reward of a document d is a Bernoulli
random variable with a probability of success rd.

In the scope of this paper, we define satisfaction as a click
with a long enough dwell time or the last click on the SERP
(see Section 6.2 for details). In this way, the cumulative
reward of our bandit algorithm over the first T query issues
equals the cumulative number of satisfied clicks, as in [31] (in
their study, each click was considered to be satisfied). We also
assume that user behavior on search result pages is consistent
with the following conditions (which are implied by the
examination hypothesis [11]): a search result can be clicked
by the user only if it is examined by her, the examination
probability does not depend on the document, and, given
the fact of examination, the click probability depends on the
document only. So, it is reasonable to consider that an arm
is pulled if and only if the user examined the snippet of the
corresponding document. Thus, the cumulative reward over
T issues of a query could be represented as

R(T ) =

T∑
t=1

k∑
i=1

P (Etdi(t) = 1)P (Ctdi(t) = 1|Etdi(t) = 1),

where the binary variables Etd and Ctd indicate the exami-
nation of the document snippet (Etd = 1) and the satisfied

1178



click on the document (Ctd = 1) at step t respectively, k is
the number of documents on each SERP, and di(t) is the
document placed on position i by our algorithm at step t.

As long as one can never be sure that the user will examine
a particular document, unless it is shown on the first position,
the number of document trials that will actually take place
during the period of T query issues is a random variable.
It is the principal difference of our approach and that of
[31] (their “effective” number of impressions is similar to our
number of trials, see their Section 3.2) from the other SMAB
formulations of the OLREE problem we are familiar with.

On the other hand, SMAB algorithms essentially use the
information of which arms were pulled. Therefore, their
application to the OLREE problem requires to infer which
snippets on the SERP were examined. In Section 3.3, we
describe both a binary inference approach, which unambigu-
ously defines if the snippet was examined or not, and a
probabilistic inference approach, which obtains the probabil-
ity of examination and performs better in practice.

3. APPROACH

3.1 Background on SMAB algorithms
Our approach to OLREE problem relies on a SMAB algo-

rithm B of the following type. In the course of the game, it
stores a vector of real-valued parameters Ft(a) ∈ RI for each
arm a, where t denotes the step number, RI is an algorithm-
specific parameter space and I is the set of parameter indices.
At each step t, algorithm B calculates scores

St(a) := SB,t(Ft(a)),

where SB,t is either a random or deterministic scoring func-
tion on Rp depending on particular algorithm B. Algorithm
B chooses an arm a∗t ∈ arg max

a
(St(a)), observes its reward,

and calculates Ft+1(a∗t ) according to some rule UB on the ba-
sis of Ft(a

∗
t ) and the observed reward. It sets Ft+1(a) = Ft(a)

for other arms a.
In the next two sections, we describe two SMAB algorithms

we adopt to the OLREE problem in Section 3.2. Below we
also describe a class of SMAB algorithms, which can be easily
applied within our approach.

3.1.1 UCB-1
First, we adopt the state-of-the-art algorithm UCB-1

[2], which was applied to the OLREE problem in the main
related studies [27, 31], where it outperformed its competitors.
Following UCB-1, at step t,

St(a) = r̂a,t + α

√
2ln t

γa,t
, (1)

where r̂a,t =
Wa,t
γa,t

is the maximum likelihood estimate of

ra after step (t − 1), γa,t is the number of trials of the
arm a during the first (t− 1) steps, Wa,t is the number of
successful trials among them, α is a parameter controlling
the exploration rate (to be fitted on a training data). Thus,
Ft(a) consists of two components, Wa,t and γa,t. The rule
UB increments γa,t by 1 when a is pulled (γa,t+1 = γa,t + 1)
and increments Wa,t by 1 when this pulling is successful.

3.1.2 Bayesian bandits
In the case of the standard SMAB problem, bandit algo-

rithms following the Bayesian approach, namely, Bayesian-

UCB [19] and Thompson sampling [20], have stronger theoret-
ically grounded guarantees and achieved better performance
in experiments with other tasks [19, 20] than the pointwise
alternatives such as UCB-1. However, to the best of our
knowledge, they have not been applied to the OLREE prob-
lem earlier. We further describe Bayesian bandits algorithm,
which generalizes both Bayesian-UCB and Thompson sam-
pling. It relies on the posterior probability density function
pa,t(r), r ∈ [0, 1], of gain ra. This posterior probability is up-
dated by rule UB to be specified below. At step t, algorithm
samples α uniformly from the set [αlow(t), αup(t)] (αlow(t)
and αup(t) are parameters of the algorithm) and then sets

St(a) to the α-quantile of pa,t(r) (i.e.,
St(a)∫
0

pa,t(r)dr = α).

Thus, Ft(a) coincides with {pa,t(r)}r∈[0,1]. At step t, with

observed reward Rt, rule UB keeps pa,t+1(r) = pa,t(r) for
a 6= a∗t and updates pa,t(r) for a = a∗t as follows:

pa,t+1(r) = pa,t(r|Rt) ∝ P (Rt|ra = r)pa,t(r) =

= rRt(1− r)1−Rtpa,t(r) ∝

∝ rWa,t+1(1− r)γa,t+1−Wa,t+1pa,0(r). (2)

Thus, Bayesian bandit, in contrast to UCB-1, requires some
initialization, i.e., prior distribution pa,0(r) for each arm a.
In the case of αlow(t) = αup(t), this algorithm coincides
with Bayesian-UCB [19], and if αlow(t) = 0, αup(t) = 1,
it reduces to Thompson sampling [20]. Note that we can
store {γa,t,Wa,t, {pa,0(r)}r∈[0,1]} instead of {pa,t(r)}r∈[0,1]
and update only γa,t and Wa,t when we run Bayesian bandits
in practice.

Since the SMAB problem is to maximize the expectation
of the cumulative reward, the rational exploitative strategy
is to choose the arm a with the maximum mean of the
posterior distribution pa,t(r). This motivated us to consider
the following modifications of Bayesian bandits and UCB-
1 (we call them MeanBayes and MeanUCB-1 respectively)
whose exploitative settings rank documents by the posterior
mean values. The algorithm MeanBayes uses the following
scoring function similar to Equation 1: St(a) = ra,t + α · σa,t,
where ra,t and σa,t are the mean and the standard deviation
of the posterior distribution pa,t(r) respectively.

The modification MeanUCB-1 calculates r̂a,t by the fol-

lowing modified rule: r̂a,t =
Wa,t+1

γa,t+2
. While the original rule

takes the maximum likelihood estimate of ra, which corre-
sponds to the mode of the posterior distribution pa,t(r), the
estimate of the modified rule corresponds to its mean in the
assumption that pa,t(r) is a beta distribution (see Section 4).

Now we describe our general approach to the OLREE
problem, which is capable of adopting a variety of known
SMAB algorithms, including the above-mentioned methods.

3.2 General Approach to OLREE
In our framework, we assume that any algorithm solving

the OLREE problem (OLREE algorithm below) works for
each query independently and deals with a limited set of
candidate documents which are chosen for exploration on
the ground of the pre-feedback information.

Adopting any SMAB algorithm B to the OLREE problem
requires answers to two questions: how to choose not one
but the list of documents for the SERP and how to update
parameters Ft(d) of each document on the ground of the
user feedback. The first problem has a very natural solution
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which is to rank documents by their scores St(d) at step t.
In order to solve the second problem, Sloan and Wang [31]
suggested to update Ft(d) by a specific rule U which, for each
document d from the SERP, estimates the posterior proba-
bility that d was examined, relying on a click model. Then,
this probability is considered as a weight of the document
trial taken into account when updating Ft(d). It is obviously
implied that Ft+1(d) = Ft(d) for each document d not pre-
sented on the SERP at step t. We call this adoption of the
SMAB algorithm B (see Algorithm 1) as a Bandit-Based
Ranking Algorithm (BBRA).

Algorithm 1: Bandit-Based Ranking Algorithm
(BBRA)

Data: set of documents D for a given query, number of
query issues T , prior F0(d) for each d ∈ D;

1 for t = 0 to T − 1 do
2 foreach d ∈ D do
3 St(d) = SB,t(Ft(d));
4 end
5 Sort D by decreasing St: {d1(t), d2(t), . . .};
6 Display documents {d1(t), . . . , dk(t)} to the user;
7 Observe user behavior C on the SERP;
8 for i = 1 to k do
9 Ft+1(di(t)) = U(Ft(di(t)), C);

10 end

11 end

Result: Ranking for each query issue: {di(t)}t=1..T
i=1..k

Now we describe the specific rules U for updating param-
eters Ft(d) utilized by each of the SMAB scoring functions
studied in this paper. Note that any SMAB algorithm with
parameters Ft(d) which could be calculated on the basis of{
Wa,t, γa,t, {pa,t(r)}r∈[0,1]

}
can easily be used within BBRA

with the below-described update rules.

3.3 Update rule for OLREE
All the updated rules we experiment with rely on the

Dependent Click Model (DCM) [15], since it was used in dif-
ferent studies on bandit algorithms in web search ranking [17,
31] and outperformed the alternative models in the experi-
ments in [31]. To replace DCM with any other click model,
one should specify an update rule based on it. However, any
of the below-described general methods for constructing up-
date rules (EM-algorithm for updating parameters of UCB-1,
Bayesian inference for Bayesian bandits) can be applied to
any click model.

As most of state-of-the-art click models, DCM is based
on the cascade hypothesis. In terms of variables di(t), E

t
d

and Ctd introduced in Section 2, DCM is described by the
following equations:

P (Etd1(t) = 1) = 1, P (Etdi+1(t) = 1| Ctdi(t) = 1) = λi,

P (Etdi+1(t) = 1| Etdi(t) = 1, Ctdi(t) = 0) = 1,

P (Ctd = 1|Etd = 1) = rd. (3)

Naturally, we assume that satisfied clicks (i.e., Ctd) are di-
rectly observed by the search engine, and examinations (i.e.,
Etd) are not, as it occurs in practice. Thus, Etd are hidden
variables of the constructed Bayesian network. As in [15], we
do not infer anything from abandoned sessions with no clicks,
because such sessions cannot be explained by DCM in the
case of real user behavior and the reasons of abandonment

are often unknown. The cascade hypothesis allows to regard
the documents above (and on) the lowest click position as
examined, while updating parameters Ft(d) on the ground
of the user feedback. Further, we use two approaches to
estimate the values Etd and, on the basis of these estimates,
to update parameters Ft(d) for the documents d placed below
the lowest click. Within the first, honest, approach, for each
of such documents, we follow [31] and estimate the posterior
probability that it was examined. When updating Ft(d),
we use this probability as the weight of the document trial
(see Equation 4). The second one, negligent, is to regard
these documents as not examined by the user. It takes into
account less information but requires much less computations
than does the honest approach. We experiment with both
approaches to verify if the complex computations of the latter
one are indeed justified by its performance. Specifically, we
have the following update rules U .

1) The negligent approach unambiguously defines which
documents were examined at each step t. Thus, we can just
use rule UB (corresponding to the chosen SMAB algorithm
B described in Section 3.1) to update Ft(d) for each exam-
ined d. In terms of that section, γd,t = |{τ < t : Eτd = 1}|,
Wd,t = |{τ < t : Cτd = 1}| (here |A| is the size of set A).

2) Now we describe the update rules for UCB-1 and
Bayesian bandits specifically (which are also applicable to
their modifications MeanUCB-1 and MeanBayes) in the case
of the honest inference approach.
• The point estimate r̂d,t and its confidence γd,t for UCB-1
are calculated by the expectation–maximization (EM) algo-
rithm which maximizes the likelihood of the observed user
behavior. This approach was suggested in [31] in combination
with ranking by UCB-1.

At the E-step, we estimate the hidden variables Etd by cal-
culating posterior probabilities of examinations P (Etd = 1|UBt),
where UBt is the user behavior observed at step t (see Ap-
pendix for details).

Further, we use them at the M-step:

γd,t+1 =

t∑
τ=1

P (Eτd = 1|UBt), Wd,t+1 =

t∑
τ=1

Cτd . (4)

• Calculation of the posterior distribution pd,t(r) for
Bayesian bandits relies on the Bayesian inference, see Ap-
pendix for details.

Note that parameters Ft(d) updated by the proposed rules
aggregate all the user feedback observed on a document
d in response to a query q. Hence, ranking by decreasing
SB,t(Ft(d)) (see Alg. 1) utilizes all the user feedback observed
in response to q. In contrast, Radlinski et al. [27, Alg. 2] used
a dedicated instance of the SMAB algorithm for each position
of the SERP, i.e., took into account only the user feedback
on that position while choosing the document for it. While it
was appropriate for the problem they solved (increasing the
SERP diversity), it may be not the best solution for our case.
Indeed, position and previous documents influence only the
examination probability of the document d (not rd) under
the examination hypothesis, and our update rules take this
influence into account. Hence, aggregation of user feedback
on d over all the contexts within the same query seems to be
rational. In order to include the approach from [27] in the set
of baseline algorithms we experiment with, we adopted it to
our problem setup by the following modification of BBRA.

Adoption of [27]. The algorithm stores a dedicated set
of parameters Ft,i(d) for each position i. The document di(t)
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for the position i is then chosen from the documents which
are not chosen for the previous positions, by maximizing
SB,t(Ft,i(d)), and the user feedback on di(t) (clicked or not)
is used to update only the parameters Ft,i(di(t)).

Adoption of ε-greedy. To test the effectiveness of ex-
ploration provided by Algorithm 1 with different scoring
functions S, we compare them with ε-greedy [34], which is
the simplest and widely used way to add exploration to any
ranking algorithm. We apply it to our exploitative algo-
rithms (see Section 7): for each position i, we choose the
top document from the exploitative ranking that was not
chosen for the previous positions with probability 1− ε, and
choose a random document from D that was not chosen for
the previous positions with probability ε.

4. PRIOR DISTRIBUTION PREDICTION
In this section, we discuss setting prior values F0 of pa-

rameters, which is needed for initialization of the BBRA
algorithm (see Algorithm 1). Note that we use variables r,
Wt, γt, Ft, {pt(r)}r∈[0,1] to denote the parameters associated

with the pair (q, d) under consideration. While estimation
of r is a standard task, prediction of confidence of this es-
timate is a rather novel problem. Diaz et al. [13, 12] used
arm-specific prior estimation of r and set confidence of this
estimate to be constant over arms, when considering search
verticals as arms. Zhu et al. [37] formulated the problem
of confidence prediction in another context and suggested
an approach to it when r is defined by a language model
based retrieval model. In contrast, our below-described ap-
proach assumes that the estimate r is generated by a ranker
learned on hundreds of features, which is more realistic for
a large-scale search engine, and proposes a set of features
useful specifically for such type of prediction.

In our task, without this prediction, the BBRA algorithm
would consider all the estimates of r as equally confident and
would explore all the documents equally, either placing even
clearly irrelevant documents on the top positions or minimiz-
ing exploration and so reducing to the standard exploitative
ranking. The former case may lead to a short-term but dra-
matic drop in query performance and irrevocably decrease
the market share of the web search engine. Thus, defining
documents whose exploration would be the most effective
is critical for incorporation of the BBRA algorithm into a
web search system. Note that this practical problem was not
considered in any related studies on bandit algorithms. For
the case of the BBRA algorithm based on Bayesian bandits
or UCB-1, we propose the following solution for it.

In the case of Bayesian bandits, we suggest to set {p0(r)}r∈[0,1]
to be a beta distribution for each query-document pair, as
it was done in [13, 12] for a query-vertical pair, because it
brings the following substantial advantages to our frame-
work. First, a beta distribution is determined by only two
parameters, α and β. From the viewpoint of our task, it is
important to set just two independent principal parameters,
estimate of r and its confidence. In terms of distribution,
they can be considered as a mean value and a mean absolute
deviation from the mean, respectively, which, in the case of
the beta distribution, can be expressed through α and β in
the following way:{

Er = α
α+β

E|r − E(r)| = 2ααββ

B(α,β)(α+β)α+β+1

(5)

Thus, after estimation of Er and E|r−E(r)| for a particular
query-document pair, we are able to set a beta distribution
for it by obtaining α and β as solutions of the system of Equa-
tions 5 by computational techniques. We use the downhill
simplex algorithm [26] here.

Second, when we start with a beta distribution within the
negligent Bayesian inference approach (see Equation 2), the
posterior distribution pt(r) we obtain at each step of the
inference is also some beta distribution. This allows us to
represent the posterior distribution by only two numbers in
our memory storage. Moreover, if p0(r) is uniform on the
interval [0, 1] in Equation 2, the parameters of the poste-
rior distribution of r are α = Wt + 1, β = γt+1 −Wt + 1. It
means that we can interpret our prior beta distribution as if
the arm corresponding to the query-document pair was pulled
(α+ β − 2) times with (α− 1) of them successfully. Then,
it is straightforward to use this distribution also for setting
prior values of UCB-1 parameters γ and W according to their
definition in Section 3.1.1: γ0 = α+ β − 2,W0 = α− 1.

Now, the only open question is how to predict the mean
value and the mean absolute deviation for each query-document
pair. For this purpose, we use a vector x = xq,d of several
hundred ranking features of the production ranker of Yan-
dex1, a popular search engine used by millions of people
from different countries. For prediction of E(r|x), we just
relied on a model M1 based on gradient boosted decision
trees (GBDT) [14] and trained by minimizing MSE. The
straightforward choice of a ground truth would be to use
values of rd inferred from logs for each query-document pair
separately. However, we infer an aggregate value of rd for all
the pairs with the same relevance label manually assigned
by professional judges hired by Yandex, since, in our experi-
ments, the user feedback is generated on the basis of these
aggregated rd values (see Section 6 for details).

At the next step, we calculate predictions M1(x) for exam-
ples of a held-out part of the training data and train a new
model M2 to predict absolute errors |r −M1(x)| of predic-
tions M1(x) also minimizing MSE. Then, we consider M2(x)

as an estimate of E(
∣∣∣r −E(r|x)

∣∣∣ |x). Note that the signed

error (r −M1(x)) of prediction M1(x) cannot be predicted
at any reasonable quality level: if we could do so, we would
just improve M1(x) by correcting it by that prediction of
the signed error. On the contrary, the absolute error of pre-
diction turns out to be predictable. In our experiments, M2

trained on the same features as M1 outperformed a simple
baseline by 19.6% in terms of MSE. This baseline predicts
the same constant value for all the query-document pairs,
which is equal to the average absolute error over all the pairs
from the training set.

However, it is reasonable to expect that our prediction
of M1 error may be significantly strengthened by some fea-
tures which are not useful for M1 itself. We consider sev-
eral ones based on predictions by M1, which are closely
related to their errors. Namely, for a query-document pair
(d, q), we use: 1) M1(d, q); 2) the rank of d according to
M1(d, q) among all the documents for q from the training
data set, denote their subset by Dq; 3) Avg(M1, q) and 4)
StDev(M1, q) are the average and the standard deviation of
M1(d′, q) over d′ ∈ Dq respectively; 5) (M1−Avg(M1, q)); 6)
(M1 −Avg(M1, q))/StDev(M1, q). Experimental results in
Table 1 show that each new feature strengthens M2 in terms

1yandex.com
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Table 1: Gain in MSE for new features of M2, %

Comparison with 1 2 3 4 5 6 All

baseline 6.95 1.83 0.19 1.19 3.57 2.70 8.19

baseline + all others 1.55 0.00 0.02 0.64 0.24 0.00 -

of MSE if added to the baseline vector of features (used for
M1) and each, except for features 2 and 6, does if added to
the baseline features supplemented by all other new ones. All
the differences, except for zeroes, are significant (p < 0.05).
Thus, prediction M1(q, d) and its distribution over all the
documents for q make its error prediction much more precise.
In further experiments, we use the best of our versions of
M2, i.e., trained on all the baseline and new features.

The key point of both predictions is the choice of the loss
function. Now we explain why minimizing merely MSE while
training M1 and M2 allows us to reach a good estimate of

E(r|x) and E(
∣∣∣r −E(r|x)

∣∣∣ |x), respectively. It is well-known

from statistics that the solution of the optimization problem

f∗ = arg min
f
E(h− f(x))2

is f∗(x) = E(h|x). Further, training of GBDT model tends
to minimize MSE of prediction on the training data set, i.e.,
to minimize Edata(h − f(x))2 where expectation is taken
over the joint distribution of all the values of (h, x) in the
training data set. Since our data set is supposed to be a large
enough uniform sample from the real joint distribution of
(h, x), Edata(h− f(x))2 is close to E(h− f(x))2. Therefore,
it is reasonable to expect that the trained model provides an
unbiased estimate of E(h|x). Finally, we apply this reasoning

to M1 with h = r and to M2 with h =
∣∣∣r − E(r|x)

∣∣∣. In

Section 7, we confirm the positive effect of these predictions
on the cumulative query performance by experimental results.

5. INTRODUCTION OF BANDITS TO LTR
A modern ranking system is usually based on hundreds of

features incorporated into a scoring function f(q, d) trained
to maximize some ranking quality measure. In Sec. 4, we use
these features to train models M1(q, d),M2(q, d) that predict
the mean value of rd and its deviation from the mean. When
we switch from using ranking based on f(q, d) to the ranking
method produced by Alg. 1, we may observe a drop of ranking
performance for the first several issues of each query. This
drop is caused by two different reasons, one is inevitable and
acceptable, and another one cannot be accepted.

First, Algorithm 1 allows some exploration whose rate is
controlled by the exploration parameter. At the start of
running Algorithm 1, this exploration leads to performance
decrease that pays off, however, by the increase in quality
aggregated at some horizon. This is in line with the main ob-
jective of OLREE to reach the best cumulative performance.
Another reason of the performance drop is that the exploita-
tive component of Algorithm 1 can be worse than f(q, d).
In fact, fully exploitative version of Algorithm 1 ranks doc-
uments by the outcomes of M1(q, d), which is trained via
minimization of MSE in a pointwise manner. At the same
time, well-known pairwise and listwise learning-to-rank algo-
rithms, which are directly focused on finding the best ranking,
are known to often outperform pointwise methods [24] and
are widely used in search systems. Therefore, we expect that
M1 has lower ranking quality than f(q, d) in general.

On the other hand, we cannot substitute M1(q, d) by f(q, d)
in Alg. 1, since scores f(q, d) cannot serve as reasonable
estimates of rd in the general case. In fact, the values of

f(q, d) can be much greater or much smaller than the values of
rd for a given query q, despite producing the best achievable
ranking (from the viewpoint of exploitation). This section
is devoted to the problem of incorporating both f(q, d) and
M1(q, d) in a single model MLTR(q, d) that would have both
advantages: (1) it should estimate rd as precisely as possible,
(2) it should produce the best possible exploitative ranking.

If we had a model that perfectly predicts rdj , the outcome
scores would also provide the ideal ranking of documents dj ,
j = 1, 2, . . . , k. Therefore, when improving the quality of a
predictive model, we expect that its ranking quality will be
also improved (the intuition of all pointwise ranking mod-
els). Our approach is based on the reverse reasoning: when
improving ranking quality of a model, we usually expect
to increase or, at least, not decrease its predictive quality.
Since f(q, d) is supposed to produce the best achievable ex-
ploitative ranking, we suggest to correct r̂d = M1(q, d) in
such a way that the ranking produced according to corrected
estimates r̃d = MLTR(q, d) would coincide with the ranking
by f(q, d). At the same time, we tend to minimize deviation
of r̃d from r̂d, as it is regarded as the best possible point-
wise estimate of rd. This formulation naturally leads to the
following particular case of the isotonic regression problem
with a complete order [5, Section 1].

Assume d1, d2, . . . , dn is the ranking produced by f , that
is, f(q, d1) ≥ f(q, d2) ≥ . . . ≥ f(q, dn). The task is to find
r̃dj = xj , j = 1, 2, . . . , n, such that x1 ≥ x2 ≥ . . . ≥ xn

n∑
i=1

(xi − r̂di)
2 → min

Applying the necessary Karush-Kuhn-Tucker conditions
implies (see [5, Section 2] for details) that the unique solution
of this problem has the following form. All the documents
are to be divided into consecutive groups {d1, . . . , dk1}, . . .,
{dkm+1, . . . , dn} to have the identical values r̃d inside each

group: r̃d1 = . . . = r̃dk1 =
r̂d1+...+r̂dk1

k1
, . . . , r̃dkm+1 = . . . =

r̃dn =
r̂dkm+1

+...+r̂dn

n−km . The optimal partition of the docu-
ment set into such groups can be found by the Pool Adjacent
Violators algorithm [5, Section 3] which has a linear com-
plexity O(n). It starts with regarding each document as a
separate group and iteratively merges neighbor groups, if the
average of r̂d in the upper group is less than in the lower one.
In order to keep ranking produced by LTR, we break ties
in each group in accordance with the ranking scores f(q, d):
r̃d := r̃d + 0.0001 · f(q, d).

While correcting the r̂d values, we keep their confidence
constant for simplicity. Thus, we have the following
Procedure of LTR-correction of F0(d):

• transform r̂d to r̃d by isotonic regression with breaking ties,
• keep the customary γd.

Our experiments show that, as we expected, this correction
increases performance not only in terms of NDCG@10 up to
the level of the production baseline LTR currently used in
Yandex (by 0.79%), but also in terms of MSE by 1.1%.

There are several ways to make use of this scheme in prac-
tice. First, we can combine any LTR ranking with our prior
distributions of rd before the start of the BBRA. Then the
BBRA starts from the performance of LTR ranking and
further improves it in accordance with the collected informa-
tion. Second, it is possible to periodically update the user
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behavior features participating in the LTR model by mak-
ing use of clicks gathered by BBRA and correct the current
posterior distribution in accordance with the updated LTR
ranking. We can expect that this periodical correction will
strengthen our approach, because the LTR algorithm could
exploit user feedback more effectively than the BBRA, which,
on the other hand, defines the rate of exploration needed for
improving LTR. In particular, it may use query-document
features to get information for other query-document pairs
from observations for a particular pair, i.e., propagate this
information over documents or queries. Third, it is also possi-
ble to re-train the LTR algorithm periodically on the ground
of the fresh values of user behavior features. Because of the
large number of other settings varying in our experiments,
we implement only the first idea and show that it gives us a
remarkable advantage over both LTR and BBRA working
separately.

6. EXPERIMENTAL SETTINGS
Here, we describe our experimental setup to evaluate and

compare different OLREE algorithms described in Section 3.

6.1 Data set
We collected the log of the live stream of search queries

submitted to Yandex during two weeks of November, 2013
(referred as Logs below). We randomly sampled 0.003%
of query issues from it. Since our algorithm can hardly
explore rd for very rare queries and hence these queries may
introduce noise into our analysis, we filtered out the queries
whose frequency estimated on Logs is less than 3 issues per
day on average. As a result, we obtained a data set of 28
746 query issues, which represent 37.5% of the search traffic.
For each query q from the data set, we united sets of top-10
results provided by different production rankers (we also use
the best of them further and refer to it as LTR below) for
this query to obtain the final set Dq of documents to assess.
All the documents from Dq were assessed for relevance using
the 5-grade scale (Perfect, Excellent, Good, Fair, Bad). In
Section 7, we experiment with sets of top-ranked documents
D (see Algorithm 1) of different predefined sizes m (from 5
to 30), which can exceed Dq for some queries q. Since, in
reality, we always have as many documents to experiment
with as we need, in such cases we added several documents
to Dq (to make its size equal to m) by sampling them from
all the Bad documents in the data set and labeling them as
Bad with respect to the query q.

Further, we randomly split all the queries from the data
set into several parts: Train1 (25% of all the queries), Train2

(25%), Train3 (20%), and Test (30%). We used the sets
Train1 and Train2 to train the predictors M1 and M2, in-
troduced in Section 4, correspondingly. As we described in
Section 3, OLREE algorithms depend on a few parameters
defining the exploration rate. Another parameter influencing
the exploration rate is the number |D| of the top documents
the bandit algorithm works with. We used Train3 to find
their optimal values for each algorithm by exhaustive search
in the parameter space. Finally, we tested M1,M2, LTR-
correction and different OLREE algorithms on Test.

6.2 Realistic simulation of production
Since it is very risky for the search engine’s market share to

experiment with exploratory algorithms on real users, most
of related studies [17, 27, 30] performed only experiments

with simulated user feedback. In our experiments, we try to
simulate a production environment much more realistically
than they did. First, in contrast to [27, 30], we use not
artificial but real queries and documents. It is especially im-
portant for our approach, because, for each query-document
pair, we need not only its value of rd but also its vector of
features.

Second, we are the first to take into account different query
frequencies while evaluating an effect of OLREE algorithms
on the aggregated quality of the web search system during
a fixed period by means of simulations, whereas all the
previous papers used simulations of the equal number of
query issues for each query. It is well-known that the more
steps a bandit algorithm is able to make, the more effective it
is in comparison with an exploitative strategy in terms of the
cumulative reward. Therefore, for appropriate evaluations,
it is required to simulate realistic query frequencies. We
perform this as follows.

Let us consider a query issue i from Test referring to a
query q whose frequency estimated on Logs is Iq issues per
10 days. Naturally, we simulate Iq consequent submissions of
q, run a tested algorithm on them. We repeat this simulation
5 times and consider the average query performance (see
Section 6.3 for the description of our metrics) over all these
issues as an estimate of the query performance of i, since i
represents a random sample from these issues in Test. Then,
to evaluate the overall performance of the algorithm, we
average the obtained results over all the query issues from
Test. Besides this cumulative performance, we also evaluate
the final quality the algorithm is able to provide after 10
days by measuring the quality of ranking produced by the
exploitative version of the algorithm (see Section 7) on the
basis of all information it obtained during Iq issues of q and
averaging this value over all the query issues from Test.

Third, for each simulated query issue, the tested algorithm
provides the list of k = 10 documents, and we simulate the
user feedback on them by DCM (see Section 3). For this
purpose, we assume λi = λ in Equation 3 and assign the
same rd values to all the query-document pairs with the same
relevance judgments, as it was done in [17, 31]. However,
unlike in these studies, we do not set λ and rd to extreme ad-
hoc values, but infer more realistic estimates by maximizing
the likelihood of the user feedback on queries from Train1

+ Train2 stored in Logs under the DCM model adapted in
the following way. In terms of Equation 3, we substitute rd,
which is attributed to each individual document d, with rj
(where j ∈ {1, 2, . . . , 5} identifies the relevance label of d), as
it was done in [9]. We also use the standard way to identify
satisfied clicks on logs [3, 4, 10]. The inferred values rj ,
j = 1, 2, . . . , 5, are also used as the ground truth for training
M1 and M2 (see Section 4).

Several studies [23, 32, 21] also suggested an alternative ap-
proach to offline experiments with bandit algorithms, which
is called the replay method and is based on utilizing logs of
the user-system interaction. However, it was applied only to
bandit algorithms choosing one arm at each step (e.g., by rec-
ommending one news article) and is effective only when each
arm was chosen by the logging policy a sufficient number of
times. The first problem we would face when trying to apply
this method to our task is that our OLREE algorithms regu-
larly suggest the permutations of top-10 documents which
are absent in the logs at all. Indeed, even just 10 documents
can be ranked in 10! = 3628800 ways. Collecting a ”random
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bucket” (as it was done in [18, 23, 21]) for such a number of
permutations will be possible only for a tiny set of extremely
popular queries, will take lots of time and will leave lots of
users dissatisfied with low-quality rankings. Second, one of
our goals is not only to find the best permutation of a given
top-10, but also to increase its overall relevance by introduc-
ing more relevant but currently lower ranked documents into
it. It means that the replay method would be infeasible even
for popular queries.

6.3 Metrics
In our evaluations, we use the following two measures

of query performance. First, we consider the widely used
NDCG measure. For this purpose, we assign an NDCG-
wise relevance gain 2g−1

24
[8] to each query-document pair,

where g ∈ {0, 1, 2, 3, 4} corresponds to its relevance judgment
(from Bad to Perfect). Because of the proprietary nature
of the LTR algorithm, we do not report absolute values
of measures, but instead report absolute changes in mea-
sure value with respect to the LTR ranking in percentages:
∆NDCG = (NDCG@10−NDCG@10LTR) · 100%. Second,
we are interested in the number of satisfied clicks on the top
10 positions, since this metric is the underlying objective
of our bandit ranking approach described in Section 2. We
present it in the form of regret which is the common metric
(to be minimized) in the SMAB problem. In our case, it
equals the difference between the cumulative reward of the
ranking by true rd values and the cumulative reward of the
tested algorithm. After averaging regret over all queries, we
measure its relative change: ∆Reg = regret−regretLTR

regretLTR
·100%.

Since the optimal exploration rate of a bandit-based algo-
rithm strictly depends on the number of steps which is defined
by the query frequency in our experiments, we split Test into
4 frequency groups of the same size in order to tune explo-
ration rate and to compare different algorithms separately
on each group. The corresponding frequency intervals (num-
ber of issues per 10 days) are [30, 150), [150, 750), [750, 5500),
[5500, 1.5 · 106) for Groups 1-4 respectively. To define a fre-
quency group in practice, one can utilize methods of query
frequency prediction, e.g., on the basis of historical data [29].

7. EXPERIMENTAL RESULTS
We first describe different methods we experimented with.

Each one consists of the following basic components with
options, which are denoted as follows:
• OLREE algorithm (see Section 3): U (MeanUCB-1 by
default, UCB-1 is indicated by the postfix orig) or B (Mean-
Bayes), which include scoring function St(d) and update rule;
additional options (see Section 3.3): 10 means that a dedi-
cated instance per each position is used (adoption of [27]), e
stands for an exploitative version (α = 0 in Equation 1 for
UCB-1, MeanUCB-1 and MeanBayes, αlow = αup = 0.5 for
Bayesian bandits), ε denotes ε-greedy applied to the exploita-
tive version, n means that the negligent inference approach
is used (honest approach is applied by default);
• prediction of prior r and γ (see Section 4): the best constant
(over all query-document pairs) estimate of r and γ = 1 (set-
ting from [31]) are used by default, R stands for prediction
of r by M1 and the best constant estimate of γ, prediction
of r by M1 and prediction of γ by M2 are denoted by P ;
• correction of prior estimates by LTR (see Section 5) is
marked by L and is not used by default. Each method is
denoted by the combination of its options.

Besides the production LTR ranking, we consider the
following two baselines, which do not take into account prior
information on relevance the search system possess: U orig is
our implementation of the method suggested in [31], U10 orig
is our adoption of Algorithm 2 from [27] to our task.

We observed that, for any query with more than 10 000
submissions within a simulated 10-day period (82% of Group
4), each method with optimal settings (see details below) is
able to provide nearly optimal ranking after 10 000 submis-
sions if switches to exploitation. Therefore, in response to
all further issues of each such query, we showed the constant
document list that is provided by the exploitative version
of the method under consideration on the basis of all infor-
mation it obtained during the first 10 000 issues. Note that
the related studies [27, 14] modeled 1000 steps of bandit
algorithms at maximum.

Although each SMAB algorithm we adopted to the OL-
REE problem has an exploration parameter that controls the
exploration rate (α for UCB-1, MeanUCB-1 and MeanBayes,
(αlow, αup) for Bayesian bandits and ε for ε-greedy), it may
be not sufficient to find the optimal strategy for the OLREE
problem, which requires to choose many documents at each
step. Thus, it may be useful to manually restrict the number
of documents m = |D| the OLREE algorithm explores. We
tune m ∈ {5, 10, 15, 20, 25, 30} and the exploration param-
eter for each method to be tested and for each frequency
group on Train3 individually. In the case of m = 5, we place
documents assigned to positions 6-10 by the LTR ranking
on the same positions on the SERP at each query issue.

As Figure 1 and Table 2 show, expectedly, the optimal m
increases with query frequency and with complexity of the
method. The optimal m for the best methods is 15 or higher,
what confirms that the exploration of documents normally
placed out of the first page has a high potential for ranking
improvement. The optimal values of α range from 0.01 to
0.44 for different MeanUCB-1 methods and from 0 to 1.32
for MeanBayes methods.

Figure 1: Setting m for UPL

Method
Frequency groups
1 2 3 4

U10 orig 5 5 5 15

U orig, U 5 5 15 20

UR 5 10 15 25

UP 10 15 15 25

UPL 15 15 15 30

UePL 15 15 15 25

UεPL 0 0 0 15

UnPL 5 5 10 10

BR 5 5 15 20

BP 5 10 15 30

BPL 15 15 15 30

Table 2: Optimal m

We conducted experiments with all the methods on Test
according to the procedure described in Section 6 and used
Student’s paired t-test to compare the obtained results. Each
of the methods based on MeanUCB-1 or MeanBayes outper-
formed its analog, where UCB-1 (Bayesian Bandits corre-
spondingly) was used and the other options were the same.
Therefore, we present results only for MeanUCB-1-based and
MeanBayes-based methods in comparison with the baselines
U10 orig and U orig. The results observed in the experiments
with the methods based on UCB-1 and Bayesian bandits are
analogous. The performance on Test in terms of cumulative
∆NDCG (for each frequency group and aggregately), final
∆NDCG, and ∆Reg (see Section 6.3) is reported in Table 3.
First, we see that among two baselines U10 orig and U orig,
which do not use any prior information, U orig performs
significantly better according to each column of the table
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Table 3: Performance evaluation of the previous bandit algo-
rithms and our methods based on priors

Method
∆NDCG,%

∆Reg,%
cumulative final

G.1 G.2 G.3 G.4 All All All
U10 orig -1.77 0.05 1.22 6.88 2.26 4.75 -17.3
U orig[31] -0.40 1.16 3.87 9.40 4.21 7.59 -25.0
U -0.36 1.17 4.07 9.40 4.27 7.64 -24.8

UR 0.01 1.27 4.23 9.66 4.55 7.76 -25.2
UP 0.34 1.99 5.57 10.13 5.25 8.51 -29.8
UPL 0.93 2.98 6.12 10.35 5.78 8.91 -31.5
UePL 0.84 2.84 5.61 9.16 5.21 7.98 -25.9
UεPL 0.84 2.84 5.61 9.64 5.37 8.31 -28.3
UnPL 0.65 1.25 1.46 2.70 2.04 3.00 -0.9
BR -0.08 1.35 3.97 9.21 4.33 7.50 -21.6
BP 0.38 1.88 5.42 9.38 4.94 8.03 -27.0
BPL 0.94 2.98 6.05 9.72 5.53 8.53 -30.4

(p < 0.01). Being based on an estimate of the mean, U is
only slightly better than U orig.

Second, we observe that our approach to utilizing prior
information from the current production system allows to re-
markably increase the cumulative performance. The method
UR using prediction of rd significantly outperforms the for-
mer three methods in terms of ∆NDCG according to each
column (p < 0.05). The prediction of γ by M2 used in UP
and BP remarkably strengthens (p < 0.01) each of the meth-
ods UR and BR, and, then, the LTR-correction provides the
additional notable increase in quality (p < 0.01 for UPL vs
UP, BPL vs BP).

Now we examine how the deterioration of each component
of the best method (UPL) affects its performance. The ex-
ploitative version UePL is significantly weaker (p < 0.01)
than UPL and BPL, except for Group 1. Within Group 1,
the number of submissions of a query is too small to signifi-
cantly gain from exploration. Next, random exploration by
ε-greedy (UεPL) turned out to be effective only for Group 4
and with low exploration rate (optimal ε = 0.04), because
of the high cost of each exploratory choice (a high risk of
choosing irrelevant document), and does not still reach the
performance of UPL or BPL. Finally, the negligent inference
approach (UnPL) performs very poorly (especially for fre-
quent queries) due to the low learning rate. This emphasizes
the importance of applying an appropriate model of user
behavior to infer as much information from logs as possible.

Figure 2 presents the dynamics of the cumulative ∆NDCG
on Group 1 (left) and Group 4 (right) for the principally
different methods: the best exploitative one (UePL), the best
method with the negligent inference (UnPL), and the best
methods with the different prior settings (U, UR, UP, UPL).
We see that prior information plays a critical role for queries
with low frequency, and learning rate defined by an OLREE
algorithm becomes much more important for more frequent
queries. However, given the OLREE algorithm, the prior
settings notably influence its performance even for Group 4.

Another aspect of search quality, which cannot be directly
measured by the cumulative NDCG, is the frequency of
significant drops in query performance in comparison with
other search engines. In the case of the method U, 14.4%
and 5.1% of query issues during the first day have ∆NDCG
less than −10% and −20% respectively, while these shares
are only 2.4% and 0.33% for UPL. It means that, in the
case of U , much more users would be negatively affected by
the severe degradations of the quality and could completely
switch to another search engine.

Finally, the analysis of UPL performance for individual
queries confirms a clear idea: the gain of proper OLREE

Figure 2: Dynamics of cumulative ∆NDCG over t days (at
1st step for t = 0)

algorithms over the LTR ranking they start with depends
on the quality of the latter. Figure 3 presents the cumula-
tive ∆NDCG of UPL averaged over all queries of a known
frequency whose initial LTR performance lies within a given
range. Naturally, it crucially decreases with the growth of
LTR quality, because chances of each exploration action to
be successful (i.e., to find a new relevant document) decrease.
It means that taking current ranking quality into account
while setting the exploration rate for the query has a high
potential to increase performance of OLREE algorithms. In
practice, methods of query performance prediction [16, 36]
can be used for this purpose.

Figure 3: Dependence of ∆NDCG of UPL on LTR quality

8. RELATED WORK
Almost all the attempts to represent the OLREE task as

the SMAB problem (exceptions are discussed below) could
be divided into the following three types, each giving its
own definition for a bandit problem, an arm, its trial and its
reward. The first two types rely on the contextual bandit
approach and regard submissions of all the queries as an entire
bandit problem. The first one considers each submission as
a trial and a linear ranking algorithm parametrized by a
weight vector ω as an arm. The reward is then defined
by the whole user behavior on the SERP (for example, it
can be opposite to abandonment). As long as arms here
are vectors, these approaches [35, 28] apply boosting rather
than standard bandit algorithms to find an optimal value
of ω. The second interpretation [22, 25] considers a query-
document as an arm, the fact of an arm trial consists in two
conditions: the corresponding document was presented on
SERP and was examined by the user, and the reward is a click
(reward=1) or a skip (reward=0). By assuming that the click
probability linearly depends on a number of features of the
query-document pair, one is able to estimate this probability
and confidence in this estimate for each pair. One major
problem of these two approaches is that linear rankers are
known to be suboptimal with respect to such state-of-the-art
LTR approaches as neural networks [6] and decision trees [7].
Another major weakness of these approaches is their low
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degree of freedom, which does not allow to derive the best
possible ranking for each individual query.

Within the third type of approaches, a separate bandit
problem setup corresponds to issues of each query (or even
more locally, see description of [27]). Definitions of an arm
and a trial are the same as in the second approach. While
considering each query separately and each document as
an arm, these approaches allow to reach the best ranking
for each of the relatively frequent queries individually. If
we assume that the first result is always examined and the
lower results are never examined, as it was made in [22], this
approach reduces to the ordinary SMAB formulation: the
document on the first position is the chosen arm. However,
in web search ranking, user satisfaction significantly depends
on the lower documents, thus maximizing relevance of only
the first document is suboptimal.

A more appropriate method was proposed in [27] for the
problem of web search diversification. There was considered
a dedicated instance of bandit algorithm for each position
within issues of a fixed query. As we discussed in Section 3.3
and showed experimentally in Section 7, our method is more
effective in our framework.

Sloan and Wang [31] proposed to use one bandit algorithm
instance for one query, which accounts for all clicks on dif-
ferent positions. However, they could not obtain any profit
from exploration in terms of NDCG. In this paper, we sig-
nificantly strengthen their approach by incorporating it into
the production ranking and by utilizing prior information.

There were also different attempts to reduce the OLREE
problem to the SMAB problem [30, 33, 1], which do not
formally correspond to the above described classes of ap-
proaches. The work of Slivkins et al. [30] belongs to the
second type of approaches, excluding the linear model as-
sumption, and considers a “perfect world” scenario: given
a query, all the documents are assumed to be represented
by points of a metric space with such a metric D(x, y) that
the probability rd of a click on a document d satisfies the
following inequality: |rd1 − rd2 | ≤ D(d1, d2). It allows to de-
velop and theoretically justify a contextual bandit algorithm
which propagates inferred information from one document
to the other ones positioned close to this document in the
metric space. However, the practical realization of such a
space construction remains an open question. In fact, it
requires an accurate estimation of differences between click
probabilities of each two documents. It is not even clear if
this problem is simpler than ranking of documents by their
click probability, the problem which we actually solve.

9. CONCLUSIONS
In this paper, we investigate a new formulation of the

exploration–exploitation dilemma in online learning to rank
(OLREE) in terms of the SMAB problem. It represents a
general approach to applying a variety of SMAB algorithms
to the OLREE problem. Further, previous methods proposed
in the literature for this problem did not consider the follow-
ing critical practical issue: any commercial search engine is
based on a highly optimized ranking algorithm which utilizes
hundreds of features and can not be just substituted with
a principally new one. Thus, an OLREE algorithm should
be “married” with the current production ranker and handle
all its advantages. To address this issue, we developed a
general framework for introducing our bandit-based learning
method into any default ranking system. Finally, we applied

the whole scheme to several SMAB algorithms and experi-
mentally demonstrated that it enables to notably increase
the performance of a major search system in terms of NDCG
measure averaged over a 10 day period.

We plan to extend this work by making our OLREE algo-
rithm more contextual, i.e., able to effectively aggregate user
feedback over different contexts to produce the optimal (in
OLREE terms) ranking in the current context at each step.

Appendix
We give here some details about the update rules
described in Section 3.3. We introduce random events
Al = {Ctdj = 0 for j = l + 1 to k} that there was no click be-
low position l at query issue t. We also denote the lowest click
position observed at query issue t by l(t) (to be considered
not as a random variable, but as a fixed value determined
by the observed user behavior after the query issue t). In
the equations below we assume all the probabilities under
the condition Ctdl(t)(t) = 1 and under the condition that the

current estimates of rd (point estimate r̂d or rd in the cases of
UCB-1, MeanUCB-1 and Bayes-UCB, posterior distribution
pd,t(r) in the case of Bayesian bandits) are true values for
all the documents. For brevity, we omit these conditions and
use dj instead of dj(t) below. Now, we describe update rules
specific for UCB-1 and Bayesian bandits:
• In the case of UCB-1, E-step is the following. For

i = 1, . . . , l(t), we obviously put P (Etdi = 1|UBt) = 1. For
i > l(t), we obtain:

P (Etdi = 1|UBt) = P (Etdi = 1|Al(t)) =

= P (
⋂

j>l(t)

{Etdj = 1}|Al(t)) =

=

P

(
Al(t) ∩

⋂
j>l(t)

{Etdj = 1}

)

P

(
Al(t) ∩

⋂
j>l(t)

{Etdj = 1}

)
+ P

(
Al(t) ∩

⋂
j>l(t)

{Etdj = 0}

) =

=

P (Etdl(t)+1
= 1) ·

∏
j>l(t)

P (Ctdj = 0|Etdj = 1)

P (Etdl(t)+1
= 1) ·

∏
j>l(t)

P (Ctdj = 0|Etdj = 1) + P (Etdl(t)+1
= 0)

=

=

λl(t) ·
∏

j>l(t)

(1− r̂dj ,t−1)

λl(t) ·
∏

j>l(t)

(1− r̂dj ,t−1) + (1− λl(t))
. (6)

The first equality is valid because of the DCM assump-
tions (3): given that the last click is on position l(t), docu-
ment dl(t)+1 was examined if and only if all the documents
below l(t) were examined. Otherwise, all the documents be-
low l(t) were not examined. We use it in the second equality
in denominator.

This estimate is similar to the Equations 9 and 10 from [31]
(Si is equivalent to our Edi). However, authors use only
observation of a click or its absence on the document d to
estimate Edi while we utilize information about all the clicks
on the SERP. As a result, we have more precise estimates for
Edi under DCM assumptions. This difference is especially
remarkable for documents above the lowest click: we exactly
know that they were examined.
• In the case of Bayesian bandits, the update rule could

be obtained in the similar way by applying the Bayesian
inference.
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